
ICT365

Software Development Frameworks

Dr Afaq Shah

Refactoring

In this Topic

• Code maintenance

• Refactoring

• What?

• Why?

• When?

• Bad code smell and its types

• Refactoring Types/Techniques

3

Code Maintenance

• Problem: "Bit rot“

• After several months and new versions, many
codebases reach one of the following states:

rewritten : Nothing remains from the original code.

abandoned : Original code is thrown out, rewritten
from scratch.

• Why?

Systems evolve to meet new needs and add new
features. If the code's structure does not also
evolve, it will "rot"

This can happen even if the code was initially reviewed
and well-designed at the time of checkin

Maintenance

• …Modification or repair of a software product
after it has been delivered.

Purposes:

fix bugs

improve performance

improve design

add features

Studies have shown that ~80% of maintenance
is for non-bug-fix-related activities such as
adding functionality (Pigosky 1997).

Maintenance is hard

• It's harder to maintain code than write your own
new code.

"house of cards" phenomenon (don't touch it!)

must understand code written by another
developer, or code you wrote at a different time
with a different mindset most developers dislike
code maintenance

• Maintenance is how developers spend much of
their time.

• It pays to design software well and plan ahead
so that later maintenance will be less painful.

Capacity for future change must be anticipated

What is Refactoring?

• The process of changing a software system in
such a way that it does not alter the external
behaviour of the code, yet improves its internal
structure.

• — Fowler, et al., Refactoring, 1999.

• http://www.refactoring.com/catalog/

Refactoring

• Refactoring is a systematic process of improving
code without creating new functionality that can
transform a mess into clean code and simple
design.

• The main purpose of refactoring is to fight
technical debt. It transforms a mess into clean
code and simple design.

Clean Code

• Clean code is obvious for other
programmers.

• Not necessarily super sophisticated algorithms.
Poor variable naming, bloated classes and
methods, magic numbers -you name it- all of
that makes code sloppy and difficult to grasp.

• Clean code doesn’t contain duplication.

• Each time you have to make a change in a
duplicate code, you have to remember to make
the same change to every instance. This
increases the cognitive load and slows down the
progress.

Clean Code

• Clean code contains a minimal number of
classes and other moving parts.

• Less code is less maintenance. Less code is
fewer bugs. Code is liability, keep it short and
simple.

• Clean code passes all tests.

• You know your code is dirty when only 95% of
your tests passed. You know you’re screwed
when you test coverage is 0%.

• Clean code is easier and cheaper to
maintain!

Why refactor?

• Why fix a part of your system that isn't broken?

• Each part of your system's code has 3 purposes:

1. to execute its functionality,

2. to allow change,

3. to communicate well to developers who read it.

If the code does not do one or more of these, it is
"broken."

• Refactoring:

improves software's design

makes it easier to understand

When to refactor?

• When is it best for a team to refactor their
code?

best done continuously (like testing) as part of
the process

hard to do well late in a project (like testing)

• Refactor when you identify an area of your
system that:

isn't well designed

isn't thoroughly tested, but seems to work so far

now needs new features to be added

Signs you should refactor

• code is duplicated

• a routine is too long

• a loop is too long or deeply nested

• a class has poor cohesion

• a class uses too much coupling

• inconsistent level of abstraction

• too many parameters

• to modify an inheritance hierarchy in parallel

• to group related data into a class

• a "middle man" object doesn't do much

• poor encapsulation of data that should be private

• a weak subclass doesn't use its inherited functionality

• a class contains unused code

The Basic Rule of Refactoring

• “Refactor the low hanging fruit”
http://c2.com/cgi/wiki?RefactorLowHangingFruit

• Low Hanging Fruit (def): “The thing that gets you
most value for the least investment.”

• In other words, don’t spend much time on it.

Checklist of refactoring

• The code should become cleaner.

• New functionality shouldn’t be created during
refactoring.

• All existing tests must pass after refactoring.

Some advice from Fowler

• “When should I refactor? How often?

How much time should I dedicate to it?”

It’s not something you should dedicate two weeks for every
six months …

… rather, you should do it as you develop!

Refactor when you recognize a warning sign (a “bad smell”)
and know what to do

… when you add a function

Likely it’s not an island unto itself

… when you fix a bug

Is the bug symptomatic of a design flaw?

… when you do a code review

A good excuse to re-evaluate your designs, share opinions.

Bad Code Smells

• Refactoring literature has notion of “code smells”

• “If it stinks, change it” (M. Fowler, Refactoring)

• A characteristic of a design that is a strong indicator it
has poor structure, and should be refactored

Bad Smells in Code

• Duplicated Code—cut and pasted everywhere

• Long Method—hard to understand

• Large Class—everything including kitchen sink

• Long Parameter List—multi-line calls

• Divergent Change—Single Responsibility Principle.

• Shotgun Surgery—can’t change just one thing

• Feature Envy—a class needs methods from another class.

• Data Clumps—data always used together

• Primitive Obsession—procedural coding style

• Switch Statements—and duplicated cases

Code Smells: Duplicated Code

• Duplicated code (code clones)

The same, or very similar code, appears in many places

Problem

A bug fix in one code clone may not be propagated to all

Makes code larger that it needs to be

Fix: extract method refactoring

Create new method that encapsulates duplicated code

Replace code clones with method call

Bad smells in code

• Duplicated code

“The #1 bad smell”

Same expression in two methods in the same class?

Make it a private ancillary routine and parameterize it

(Extract method)

Same code in two related classes?

Push commonalities into closest mutual ancestor and
parameterize

Use template method DP for variation in subtasks

(Form template method)

Bad smells in code

• Payoff

• Merging duplicate code simplifies the structure
of your code and makes it shorter.

• Simplification + shortness = code that’s easier
to simplify and cheaper to support.

Code smells: Long Method

• Long method

• A method that has too many lines of code

How long is too long? Depends.

Over 20 is usually a bad sign.

Under 10 lines is typically good.

Still, no hard and fast rules.

Problem

The longer a method, the harder it is to understand,
change, and reuse

Fix: extract method

Take chunks of code from inside long method, and make
a new method

Call new method inside the now-not-so-long method.

Bad smells in code

• Long method

Often a sign of:

Trying to do too many things

Poorly thought out abstractions and boundaries

Best to think carefully about the major tasks and how they
inter-relate. Be aggressive!

Break up into smaller private methods within the class

(Extract method)

Delegate subtasks to subobjects that “know best” (i.e., template
method DP)

(Extract class/method, Replace data value with object)

Bad smells in code

• Long method

Fowler’s heuristic:

When you see a comment, make a method.

Often, a comment indicates:

The next major step

Something non-obvious whose details detract from the clarity of the
routine as a whole.

In either case, this is a good spot to “break it up”.

Code smells: Feature Envy

• Feature Envy

A method in one class uses primarily data and
methods from another class to perform its work

Problem:

Indicates abstraction fault.

Ideally want data, and actions on that data, to live
in the same class.

Feature Envy indicates the method was incorrectly
placed in the wrong class

Fix:

Move method

Move the method with feature envy to the class
containing the most frequently used methods
and data items

Bad smells in code

• Feature envy

A method seems more interested in another class
than the one it’s defined in

e.g., a method A::m() calls lots of get/set
methods of class B

Solution:

Move m() (or part of it) into B!

(Move method/field, extract method)

Code smells: Feature Envy

• Payoff

• Less code duplication (if the data handling code
is put in a central place).

• Better code organization (methods for handling
data are next to the actual data).

Code smells: Large class

• Large class

A class is trying to do too much

Many instance variables

Many methods

• Problem:

Indicates abstraction fault

There is likely more than one concern embedded in the code

Or, some methods belong on other classes

Associated with duplicated code

• Fix:

Extract class refactoring

Take a subset of the instance variables and methods and create a new
class with them

This makes the initial (long) class shorter

Move method refactoring

Move one or more methods to other classes

Bad smells in code

• Large class

i.e., too many different subparts and methods

Two step solution:

1. Gather up the little pieces into aggregate subparts.

(Extract class, replace data value with object)

2. Delegate methods to the new subparts.

(Extract method)

Likely, you’ll notice some unnecessary subparts that have
been hiding in the forest!

Code smells: switch statements

• Switch statements

The cases in a switch statement contain logic for
different types of instances of the same class

In object-oriented code, this indicates new
subclasses should be created

• Problem

The same switch/case structure appears in many
places

• Fix

Create new subclasses

Extract method to move case block logic into
methods on the new subclasses

Bad smells in code

• Switch statements

Here’s Fowler’s example:

Double getSpeed () {

switch (_type) {

case EUROPEAN:

return getBaseSpeed();

case AFRICAN:

return getBaseSpeed() –

getLoadFactor() * _numCoconuts;

case NORWEGIAN_BLUE:

return (_isNailed) ? 0

: getBaseSpeed(_voltage);

}

}

Code smells: Data class

• Data class

A class that has only class variables, getter/setter
methods/properties, and nothing else

Is just acting as a data holder

• Problem

Typically, other classes have methods with feature envy

That is, there are usually other methods that primarily
manipulate data in the data class

Indicates these methods should really be on the data class

• Fix

Examine methods that use data in the data class, and use
move method refactoring to shift methods

Bad smells in code

• Data clumps

You see a set of variables that seem to “hang out”
together

e.g., passed as parameters, changed/accessed at the same
time

Usually, this means that there’s a coherent subobject just
waiting to be recognized and encapsulated

void Scene::setTitle (string titleText,

int titleX, int titleY,

Colour titleColour){…}

void Scene::getTitle (string& titleText,

int& titleX, int& titleY,

Colour& titleColour){…}

Bad smells in code

• Data clumps

In the example, a Title class is dying to be born

If a client knows how to change a title’s x, y, text, and colour,
then it knows enough to be able to “roll its own” Title

objects.

However, this does mean that the client now has to talk to another
class.

This will greatly shorten and simplify your parameter lists (which
aids understanding) and makes your class conceptually
simpler too.

Moving the data may create feature envy initially

May have to iterate on the design until it feels right.

(Preserve whole object, extract class, introduce parameter object)

Bad smells in code

• Long parameter list

Long parameter lists make methods difficult for clients to
understand

This is often a symptom of

Trying to do too much

With too many disparate subparts

• Reasons for the Problem

several algorithms merged in a single method

byproduct of efforts to make classes independently

Bad smells in code

• Long parameter list

Solution:

Trying to do too much?

Break up into sub-tasks

(Extract method)

… too far from home?

Localize passing of parameters;

Bad smells in code

• Divergent change

Occurs when one class is commonly changed in different
ways for different reasons

Divergent Change is when many changes are made to a
single class

Likely, this class is trying to do too much and contains too
many unrelated subparts

This is a sign of poor cohesion

Unrelated elements in the same container

Solution:

Break it up, reshuffle, reconsider relationships and
responsibilities (Extract class)

Bad smells in code

• Shotgun surgery

… the opposite of divergent change

Shotgun Surgery refers to when a single change is made
to multiple classes simultaneously.

Each time you want to make a single, seemingly coherent
change, you have to change lots of classes in little ways

Also a classic sign of poor cohesion

Related elements are not in the same container!

Solution:

Look to do some gathering, either in a new or existing class.

(Move method/field)

Bad smells in code

• Primitive obsession

All subparts of an object are instances of primitive types

(int, string, bool, double, etc.)

e.g., dates, currency, tel.#, ISBN, special string values

Often, these small objects have interesting and non-trivial
constraints that can be modelled

e.g., fixed number of digits/chars, check digits, special
values

Solution:

Create some “small classes” that can validate and
enforce the constraints.

This makes your system mode strongly typed.

Bad smells in code

• Lazy class

Classes that don’t do much that’s different from other
classes.

If there are several sibling classes that don’t exhibit
polymorphic behavioural differences , the consider
just collapsing them back into the parent and add
some parameters

Often, lazy classes are legacies of ambitious design or a
refactoring that gutted the class of interesting
behaviour

(Collapse hierarchy, inline class)

Bad smells in code

• Speculative generality

“We might need this one day …”

Fair enough, but did you really need it after all?

Extra classes and features add to complexity.

XP philosophy:

“As simple as possible but no simpler.”

Keep in mind that refactoring is an ongoing process.

If you really do need it later, you can add it back in.

Bad smells in code

• Message chains

Client asks an object which asks a subobject, which asks
a subobject, …

Multi-layer “drill down” may result in sub-sub-sub-objects
being passed back to requesting client.

Sounds like the client already has an understanding of the
structure of the object, even if it is going through
appropriate intermediaries.

Probably need to rethink abstraction …

Bad smells in code

• Middle man

“All hard problems in software engineering can be solved
by an extra level of indirection.”

If you notice that many of a class’s methods just turn
around and beg services of delegate subobjects, the
basic abstraction is probably poorly thought out.

An object should be more than the some of its parts in
terms of behaviours!

(Remove middle man, replace delegation with inheritance)

Bad smells in code

• Inappropriate intimacy

Sharing of secrets between classes, esp. outside of the holy
bounds of inheritance

e.g., public variables, indiscriminate definitions of get/set
methods, C++ friendship, protected data in classes

Leads to data coupling, intimate knowledge of internal
structures and implementation decisions.

Makes clients brittle, hard to evolve, easy to break.

Solution:

Appropriate use of get/set methods

Rethink basic abstraction.

Merge classes

(Move/extract method/field, change bidirectional association to
unidirectional, hide delegate)

Bad smells in code

• Alternative classes with different
interfaces

Classes/methods seem to implement the same or similar
abstraction yet are otherwise unrelated.

This is not a knock against overloading, just haphazard
design.

Solution:

Move the classes “closer” together.

Find a common interface.

Find a common subpart and remove it.

(Extract [super]class, move method/field, rename method)

Bad smells in code

• Refused bequest

Subclass inherits methods/variables but doesn’t seem to use
some of them.

In a sense, this might be a good sign:

The parent manages the commonalities and the child manages the
differences.

Might want to look at typical client use to see if clients think
child is-a parent

Do clients use parent’s methods? … use parent as static type?

Did the subclass inherit as a cheap pickup of functionality?

Fowler/Beck claim this isn’t as bad a smell as the others …

Might be better to use delegation

(Replace inheritance with delegation)

Bad smells in code

• Refused bequest

Another perspective:

Parent has features that are used by only some of its
children.

Typical solution is to create some more intermediate
abstract classes in the hierarchy.

Move the peculiar methods down a level.

(Push down field/method)

Bad smells in code

• Comments

A method is filled with explanatory comments.

In the context of refactoring, Fowler claims that long
comments are often a sign of opaque, complicated,
inscrutable code.

They aren’t against comments so much as in favour of self-
evident coding practices.

Rather than explaining opaque code, restructure it!

(Extract method/class, [many others applicable] …)

Comments are best used to document rationale

i.e., explain why you picked one approach over another.

Refactoring Types/Techniques

Some types of refactoring

• refactoring to fit design patterns

• renaming (methods, variables)

• extracting code into a method or module

• splitting one method into several to improve cohesion
and readability

• changing method signatures

• performance optimization

• moving statements that semantically belong together
near each other

• naming (extracting) constants

• clarifying a statement that has evolved over time or is
unclear

See also http://www.refactoring.org/catalog/

http://www.refactoring.org/catalog/

Types of Refactoring

• Extract Method Refactoring

• Rename Refactoring

• Encapsulate Field Refactoring

• Remove Parameters Refactoring

• Reorder Parameters Refactoring

• Extract Interface Refactoring

Your Task: Review and complete Lab
tasks.
Important for Assignment 2

Extract Method Refactoring

Rename Refactoring

Encapsulate Field Refactoring

Remove Parameter Refactoring

Reorder Parameter Refactoring

• Reorder Parameters is a Visual C# refactoring
operation that provides an easy way to change
the order of the parameters for methods

• This Refactoring is used to change the
method parameter order and automatically
update all method references.

• Reorder Parameters changes the declaration,
and at any locations where the member is
called, the parameters are rearranged to
reflect the new order.

• Use it when you need to standardize the
method signature or make the parameters
order more logical.

Extract Interface Refactoring

Learning Refactoring

• Pick a goal—something’s wrong with the program.
Resolve to fix it. Then fix it.

• Stop when you’re unsure.

• Backtrack. Use test-driven development to make sure
you haven’t broken something. If you have, back up.

• Work with a friend. ‘We explain to each other what
we don’t understand.’ As long as you don’t share
your code, we’ll never notice, and you’ll learn a lot in
the process.

C# Reference

• Refactoring (C#)

• https://msdn.microsoft.com/en-us/library/719exd8s.aspx

• Extract Method Refactoring (C#)

• https://msdn.microsoft.com/en-
us/library/0s21cwxk(v=vs.120).aspx

• Rename Refactoring (C#)

• https://msdn.microsoft.com/en-
us/library/6kxxabwd(v=vs.120).aspx

• Encapsulate Field Refactoring (C#)

• https://msdn.microsoft.com/en-
us/library/a5adyhe9(v=vs.120).aspx

153

https://msdn.microsoft.com/en-us/library/719exd8s.aspx
https://msdn.microsoft.com/en-us/library/0s21cwxk(v=vs.120).aspx
https://msdn.microsoft.com/en-us/library/6kxxabwd(v=vs.120).aspx
https://msdn.microsoft.com/en-us/library/a5adyhe9(v=vs.120).aspx

C# Reference

• Extract Interface Refactoring (C#)

• https://msdn.microsoft.com/en-
us/library/fb3dyx26(v=vs.120).aspx

• Remove Parameters Refactoring (C#)

• https://msdn.microsoft.com/en-
us/library/0c7wac46(v=vs.120).aspx

• Reorder Parameters Refactoring (C#)

• https://msdn.microsoft.com/en-
us/library/5ss5z206(v=vs.120).aspx

154

https://msdn.microsoft.com/en-us/library/fb3dyx26(v=vs.120).aspx
https://msdn.microsoft.com/en-us/library/0c7wac46(v=vs.120).aspx
https://msdn.microsoft.com/en-us/library/5ss5z206(v=vs.120).aspx

Reading:

• Martin Fowler, Kent Beck, John Brant, William Opdyke
and Don Roberts, Refactoring: Improving the Design of
Existing Code, Addison Wesley, 1999.

• Previously:

• Serge Demeyer, Stéphane Ducasse and Oscar
Nierstrasz, Object-Oriented Reengineering Patterns,
Morgan Kaufmann, 2002.

• Erich Gamma, Richard Helm, Ralph Johnson and John
Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison Wesley, Reading,
Mass., 1995.

• Sherman R. Alpert, Kyle Brown and Bobby Woolf, The
Design Patterns Smalltalk Companion, Addison Wesley,
1998.

Other reading:

• Extreme Programming Explained, by Kent Beck

• Anything by Jon Bentley - Programming Pearls,
More Programming Pearls, Writing Efficient
Programs

Acknowledgements

Sources used in this presentation include:

• Refactoring and Code Maintenance by Marty Stepp

• Harry Erwin

• Refactoring.guru

157

